Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Reprod Immunol ; 153: 103692, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970080

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are key enzymes for tryptophan degradation, regulating immune tolerance during pregnancy. The intrauterine renin-angiotensin system is also involved in the progression of a healthy pregnancy. Angiotensin(1-7) maintains the integrity of fetal membranes via counteracting the pro-inflammatory actions of Angiotensin II. No data are available on placental Angiotensin(1-7) co-expression with TDO. We aimed to characterize TDO mRNA expression and its localization in different areas of the placenta of physiological pregnancies delivered at term; its co-expression with Angiotensin(1-7) and its correlation with the plasma kynurenine/tryptophan (Kyn/Trp) ratio was investigated. This prospective observational study included a nonconsecutive series of 20 singleton uncomplicated pregnancies delivered vaginally. TDO mRNA was expressed in both maternal and fetal sides of the placentas and TDO protein also in the villi and it was co-expressed with IDO1 in almost half of the placental cells at these sites. The percentage of TDO+ and IDO1+ cells appeared to be influenced by maternal pre-gestational smoking and newborn weight. A strong correlation was found between the percentage of TDO+ and IDO1+ cells in the villi. TDO+ cells also expressed Angiotensin(1-7), with a higher percentage on the fetal side and in the villi compared to the maternal one. Kyn/Trp plasma ratio was not correlated with IDO and TDO expression nor with the patient's characteristics. Collectively, our data indicate that TDO is detectable in placental tissue and is co-expressed with IDO and with Angiotensin(1-7)+ on the fetal side and in the villi.


Assuntos
Angiotensina I , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase , Fragmentos de Peptídeos , Placenta , Triptofano Hidroxilase , Angiotensina I/genética , Angiotensina I/imunologia , Angiotensina II/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Recém-Nascido , Cinurenina/análise , Cinurenina/genética , Cinurenina/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Placenta/enzimologia , Placenta/imunologia , Gravidez , RNA Mensageiro , Triptofano/análise , Triptofano/genética , Triptofano/imunologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/imunologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/imunologia
2.
Immunity ; 55(2): 324-340.e8, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139353

RESUMO

The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.


Assuntos
Tolerância Imunológica/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Triptofano/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Humanos , Indóis/imunologia , Indóis/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Microbiota/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo
3.
Front Immunol ; 12: 730289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659216

RESUMO

Gliomas are the most common primary malignant tumor in adults' central nervous system. While current research on glioma treatment is advancing rapidly, there is still no breakthrough in long-term treatment. Abnormalities in the immune regulatory mechanism in the tumor microenvironment are essential to tumor cell survival. The alteration of amino acid metabolism is considered a sign of tumor cells, significantly impacting tumor cells and immune regulation mechanisms in the tumor microenvironment. Despite the fact that the metabolism of tryptophan in tumors is currently discussed in the literature, we herein focused on reviewing the immune regulation of tryptophan metabolism in the tumor microenvironment of gliomas and analyzed possible immune targets. The objective is to identify potential targets for the treatment of glioma and improve the efficiency of immunotherapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Triptofano/metabolismo , Microambiente Tumoral , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Triptofano/imunologia
4.
FASEB J ; 35(10): e21888, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473368

RESUMO

Endogenous tryptophan metabolism pathways lead to the production of serotonin (5-hydroxytryptamine; 5-HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%-2%) are sequestered for 5-HT production. Though often associated with the functioning of the central nervous system, significant production of 5-HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5-HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5-HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5-HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5-HT and kynurenine pathways.


Assuntos
Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Cinurenina/imunologia , Serotonina/imunologia , Transdução de Sinais/imunologia , Triptofano/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia
6.
Mol Cell ; 81(11): 2290-2302.e7, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33831358

RESUMO

Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.


Assuntos
Carcinoma Ductal Pancreático/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Pancreáticas/genética , Células Estreladas do Pâncreas/metabolismo , Evasão Tumoral/efeitos dos fármacos , Aloenxertos , Animais , Antineoplásicos/farmacologia , Carbono/imunologia , Carbono/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Formiatos/imunologia , Formiatos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interferon gama/genética , Interferon gama/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Oximas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Serina/imunologia , Serina/metabolismo , Serina/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Triptofano/imunologia , Triptofano/metabolismo , Triptofano/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
7.
Front Immunol ; 12: 636081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708223

RESUMO

Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias/enzimologia , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Evasão Tumoral , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/imunologia , Cinurenina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Triptofano/imunologia , Triptofano Oxigenase/antagonistas & inibidores , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral
8.
Curr Opin Immunol ; 70: 7-14, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418116

RESUMO

L-tryptophan is an essential amino acid that undergoes complex metabolic routes, resulting in production of many types of signaling molecules that fall into two types: retaining the indole ring such as serotonin, melatonin and indole-pyruvate or breaking the indole ring to form kynurenine. Kynurenines are the precursor of signaling molecules and are the first step in de novo NAD+ synthesis. In mammalian cells, the kynurenine pathway is initiated by the rate-limiting enzymes tryptophan-2,3-dioxygenase (TDO) and interferon responsive indoleamine 2,3-dioxygenase (IDO1) and is the major route for tryptophan catabolism. IDO1 regulates immune cell function through the kynurenine pathway but also by depleting tryptophan in microenvironments, and especially in tumors, which led to the development of IDO1 inhibitors for cancer therapy. However, the connections between tryptophan depletion versus product supply remain an ongoing challenge in cellular biochemistry and metabolism. Here, we highlight current knowledge about the physiological and pathological roles of tryptophan signaling network with a focus on the immune system.


Assuntos
Indóis/imunologia , Neoplasias/imunologia , Triptofano/imunologia , Humanos , Indóis/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/imunologia , Triptofano/metabolismo
9.
Curr Opin Immunol ; 70: 27-32, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33454521

RESUMO

Co-evolution of the microbial communities with the mammalian host has resulted in intertwined metabolic pathways ultimately affecting physiological and pathological processes. Tryptophan derivatives of host and microbial origin are emblematic of this metabolic promiscuity. One such metabolite, indole-3-aldehyde (3-IAld), is produced by the gut microbiota and was originally identified for its ability to promote epithelial barrier functions by working as an agonist of the Aryl hydrocarbon Receptor. This original observation has been extended in the recent years to include a plethora of activities in several pathological conditions. In this review, we describe the multifaceted role of 3-IAld in host physiology, pathology and immunity and discuss how its proper clinical development may turn into a valuable therapeutic strategy.


Assuntos
Indóis , Animais , Microbioma Gastrointestinal/imunologia , Humanos , Indóis/imunologia , Indóis/metabolismo , Microbiota/imunologia , Triptofano/imunologia , Triptofano/metabolismo
10.
Biochimie ; 182: 131-139, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33460767

RESUMO

Tryptophan (Trp) metabolism is associated with diverse biological processes, including nerve conduction, inflammation, and the immune response. The majority of free Trp is broken down through the kynurenine (Kyn) pathway (KP), in which indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the rate-limiting step. Clinical studies have demonstrated that Trp metabolism promotes tumor progression due to modulation of the immunosuppressive microenvironment through multiple mechanisms. In this process, IDO-expressing dendritic cells (DCs) exhibit tolerogenic potential and orchestrate T cell immune responses. Various signaling molecules control IDO expression, initiating the immunoregulatory pathway of Trp catabolism. Based on these characteristics, KP enzymes and catabolites are emerging as significant prognostic indicators and potential therapeutic targets of cancer. The physiological and oncologic roles of Trp metabolism are briefly summarized here, along with great challenges for treatment strategies.


Assuntos
Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase , Proteínas de Neoplasias , Neoplasias , Triptofano Oxigenase , Triptofano , Microambiente Tumoral/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/imunologia , Cinurenina/metabolismo , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Triptofano/imunologia , Triptofano/metabolismo , Triptofano Oxigenase/imunologia , Triptofano Oxigenase/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-33346015

RESUMO

It is unclear how the tryptophan (TRP) breakdown pathway relates to the activated inflammatory state of patients with major depressive disorder (MDD). We determined in two different cohorts of patients with MDD (n = 281) and healthy controls (HCs) (n = 206) collected for the EU-MOODINFLAME project: We then correlated outcomes to each other, and to the clinical characteristics of patients. Both cohorts of patients differed clinically; patients of the Munich cohort (n = 50) were less overweight, less medicated, were less in the current episode and showed a higher HAM-D 17 score as compared with patients of the Muenster cohort (n = 231). An increased expression of ICCGs was found in the circulating monocytes of patients of both cohorts; this was in particular evident in the Munich cohort. In contrast, ISGs monocyte expression levels tended to be reduced (both cohorts). TRP serum levels were linked to the pro-inflammatory (ICCGs) monocyte state of patients; a decrease in TRP serum levels was found in the Munich cohort; TRP levels correlated negatively to patient's HAM-D 17 score. Contrary to what expected, KYN serum levels were not increased in patients (both cohorts); and an increased KYN/TRP ratio was only found in the Munich patients (who showed the lowest TRP serum levels). IDO-1 monocyte expression levels were decreased in patients (both cohorts) and negatively associated to their pro-inflammatory (ICCGs) monocyte state. Thus, a depletion of TRP via an ICCGs-inflammatory IDO activation is not likely in MDD. Downstream from KYN, and regarding compounds influencing glutamate receptors (GR), reduced serum levels of KYNA (NMDA-R antagonist), 3-HK (NMDA-R agonist), and XA (mGlu2/3 agonist) were found in patients of both cohorts; PIC serum levels (NMDA-R antagonist) were increased in patients of both cohorts. Reduced QUIN serum levels (NMDA-R agonist) were found in patients of the Muenster cohort,only. 3-HK levels correlated to the monocyte inflammatory ICCG state of patients. The ultimate effect on brain glutamate receptor triggering of this altered equilibrium between peripheral agonists and antagonists remains to be elucidated.


Assuntos
Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/epidemiologia , Mediadores da Inflamação/sangue , Monócitos/metabolismo , Transdução de Sinais/fisiologia , Triptofano/sangue , Adulto , Estudos de Coortes , Transtorno Depressivo Maior/imunologia , Feminino , Alemanha/epidemiologia , Humanos , Mediadores da Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Triptofano/imunologia
12.
Biomolecules ; 10(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899743

RESUMO

In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.


Assuntos
Arginina/imunologia , Arginina/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Triptofano/imunologia , Triptofano/metabolismo , Animais , Humanos , Cinurenina/imunologia , Cinurenina/metabolismo , Microbiota/imunologia , Microbiota/fisiologia , Serotonina/imunologia , Serotonina/metabolismo
13.
Front Immunol ; 11: 1741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849620

RESUMO

The development of autoimmunity involves complex interactions between genetics and environmental triggers. The gut microbiota is an important environmental constituent that can heavily influence both local and systemic immune reactivity through distinct mechanisms. It is therefore a relevant environmental trigger or amplifier to consider in autoimmunity. This review will examine recent evidence for an association between intestinal dysbiosis and autoimmune diseases, and the mechanisms by which the gut microbiota may contribute to autoimmune activation. We will specifically focus on recent studies connecting tryptophan metabolism to autoimmune disease pathogenesis and discuss evidence for a microbial origin. This will be discussed in the context of our current understanding of how tryptophan metabolites regulate immune responses, and how it may, or may not, be applicable to autoimmunity.


Assuntos
Doenças Autoimunes/microbiologia , Autoimunidade , Bactérias/metabolismo , Microbioma Gastrointestinal , Intestinos/microbiologia , Triptofano/metabolismo , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/microbiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Bactérias/imunologia , Disbiose , Humanos , Intestinos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/microbiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/microbiologia , Triptofano/imunologia
14.
J Neuroimmunol ; 347: 577330, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731051

RESUMO

We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects. These results suggest possible involvement of various inflammatory markers in CRPS pathogenesis.


Assuntos
Síndromes da Dor Regional Complexa/diagnóstico , Síndromes da Dor Regional Complexa/imunologia , Interleucina-1/imunologia , Cinurenina/imunologia , Triptofano/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adulto , Idoso , Biomarcadores/sangue , Síndromes da Dor Regional Complexa/sangue , Feminino , Humanos , Interleucina-1/sangue , Cinurenina/sangue , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Triptofano/sangue , Fator de Necrose Tumoral alfa/sangue
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165707, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004621

RESUMO

Current understanding of key cellular pathways, which are activated by the interaction between T. cruzi and host immunity, is crucial for controlling T. cruzi infection and also for limiting the development of the immunopathological symptoms of Chagas´ disease. Here, we focus on recent advances in the knowledge of modulation of innate receptors such as TLRs and NLRs, especially NLRP3, by T. cruzi in different cells of the immune system. On the other hand, the modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival. In this sense, we discuss the importance of the metabolism of two amino acids: L-arginine and tryptophan, and evaluate the role of iNOS, arginase and IDO enzymes in the regulation of innate and adaptive immune response during this infection; and, finally, we also discuss how T. cruzi exploits the AhR, mTOR and Wnt signaling pathways to promote their intracellular replication in macrophages, thus evading the host's immune response.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Transdução de Sinais/imunologia , Trypanosoma cruzi/imunologia , Imunidade Adaptativa , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Arginina/imunologia , Arginina/metabolismo , Caspase 1/metabolismo , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Vetores de Doenças , Humanos , Imunidade Inata , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Toll-Like/metabolismo , Triatoma/imunologia , Triatoma/parasitologia , Trypanosoma cruzi/metabolismo , Triptofano/imunologia , Triptofano/metabolismo
16.
Front Immunol ; 11: 600428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552055

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-ß production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.


Assuntos
Arginina/imunologia , Imunossupressores/imunologia , Esclerose Múltipla , Triptofano/imunologia , Animais , Arginase/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Óxido Nítrico Sintase Tipo II/imunologia , Triptofano Oxigenase/imunologia
17.
Front Immunol ; 11: 628432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633745

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death worldwide. Despite decades of research, there is still much to be uncovered regarding the immune response to Mtb infection. Here, we summarize the current knowledge on anti-Mtb immunity, with a spotlight on immune cell amino acid metabolism. Specifically, we discuss L-arginine and L-tryptophan, focusing on their requirements, regulatory roles, and potential use as adjunctive therapy in TB patients. By continuing to uncover the immune cell contribution during Mtb infection and how amino acid utilization regulates their functions, it is anticipated that novel host-directed therapies may be developed and/or refined, helping to eradicate TB.


Assuntos
Arginina , Mycobacterium tuberculosis , Triptofano , Tuberculose , Arginina/imunologia , Arginina/metabolismo , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Triptofano/imunologia , Triptofano/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo
18.
Cancer Immunol Immunother ; 69(1): 57-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31802183

RESUMO

Tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade attack by the immune system. Despite promising success with blockade of immune checkpoints like PD-1 the majority of patients does not respond to current immunotherapies. The degradation of tryptophan into immunosuppressive kynurenine is an important immunosuppressive pathway. Recent attempts to target the key enzymes of this pathway-IDO1 and TDO2-have so far failed to show therapeutic benefit in the clinic, potentially caused by insufficient target engagement. We, therefore, sought to add an alternative, highly efficient approach to block the degradation of tryptophan by inhibiting the expression of IDO1 and TDO2 using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). We show that LNA-modified ASOs can profoundly inhibit the expression of IDO1 and TDO2 in cancer cells in vitro without using a transfection reagent with IC50 values in the sub-micromolar range. We furthermore measured kynurenine production by ASO-treated cancer cells in vitro and observed potently reduced kynurenine levels. Accordingly, inhibiting IDO1 expression in cancer cells in an in vitro system leads to increased proliferation of activated T cells in coculture. We furthermore show that combined treatment of cancer cells in vitro with IDO1-specific ASOs and small molecule inhibitors can reduce the production of kynurenine by cancer cells in a synergistic manner. In conclusion, we propose that a combination of LNA-modified ASOs and small molecule inhibitors should be considered as a strategy for efficient blockade of the degradation of tryptophan into kynurenine in cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/terapia , Oligonucleotídeos Antissenso/farmacologia , Triptofano Oxigenase/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Concentração Inibidora 50 , Cinurenina/imunologia , Cinurenina/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/imunologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Linfócitos T/imunologia , Triptofano/imunologia , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo
19.
Front Immunol ; 10: 2754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824517

RESUMO

Crohn's disease (CD) and Ulcerative colitis (UC) are grouped as Inflammatory Bowel Diseases (IBD). The IBD is associated to a multifaceted interplay between immunologic, microbial, genetic, and environmental factors. Nowadays, the gut microbiota (GM) dysbiosis has been indicated as a cause in the IBD development, affecting the impaired cross-talk between GM and immune cells. Moreover, recent studies have uncovered a crucial role for bacterial post-biotics (metabolites) in the orchestration of the host immune response, as they could be messengers between the GM and the immune system. In addition, transgenic mouse models showed that SCFAs (Short Chain Fatty Acids) and Tryptophan (Trp) post-biotics play important immunomodulatory effects, regulating both innate and adaptive immune cell generation, their function and trafficking. Here, we present an overview on the main microbial post-biotics and their effects on the gut mucosa with specific emphasis on their relevance for IBD. Finally, we discuss the therapeutic potential of SCFA and Trp post-biotics on IBD through approaches based on the "immunonutrition," defined as a modulation of the immune system provided by specific interventions that modify dietary nutrients.


Assuntos
Ácidos Graxos Voláteis/imunologia , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Triptofano/imunologia , Animais , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos
20.
Nat Commun ; 10(1): 5695, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836702

RESUMO

Despite improvement in clinical management, allogeneic hematopoietic stem cell transplantation (HSCT) is still hampered by high morbidity and mortality rates, mainly due to graft versus host disease (GvHD). Recently, it has been demonstrated that the allogeneic immune response might be influenced by external factors such as tissues microenvironment or host microbiota. Here we used high throughput metabolomics to analyze two cohorts of genotypically HLA-identical related recipient and donor pairs. Metabolomic profiles markedly differ between recipients and donors. At the onset of acute GvHD, in addition to host-derived metabolites, we identify significant variation in microbiota-derived metabolites, especially in aryl hydrocarbon receptor (AhR) ligands, bile acids and plasmalogens. Altogether, our findings support that the allogeneic immune response during acute GvHD might be influenced by bile acids and by the decreased production of AhR ligands by microbiota that could limit indoleamine 2,3-dioxygenase induction and influence allogeneic T cell reactivity.


Assuntos
Microbioma Gastrointestinal/fisiologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Metaboloma/imunologia , Doença Aguda , Adulto , Idoso , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/imunologia , Ácidos e Sais Biliares/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Ligantes , Doadores Vivos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Plasmalogênios/análise , Plasmalogênios/imunologia , Plasmalogênios/metabolismo , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Irmãos , Linfócitos T/imunologia , Transplante Homólogo/efeitos adversos , Transplante Homólogo/métodos , Triptofano/imunologia , Triptofano/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...